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1.0 INTRODUCTION

This document reports the architecture study results for the real-time implementation of
remote minefield detection system (REMIDS) algorithms using images from the REMIDS II
sensor. The real-time REMIDS system consists of two intercommunicating processors. The

processes that they perform are referred to as data compression and classification.

Sections 2.0 and 3.0 and their related subsections discuss the data compression and

classification algorithms of the REMIDS II System.

Sections 2.1 and 3.1 discuss the data compression and classification algorithms. Sec-
tions 2.2 and 3.2 discuss the performance of the processors that were considered for perform-

ing the data compression and classification algorithms.

Sections 2.3, 2.4, 3.3 and 3.4 determine a quantitative score for each of the data compres-
sion and classification processors. These scores are determined through a two-part procedure
{explained in Section 1.2) ~nd are nsed to evaluate the processors executing the data com-

pression and classification algorithms.

Section 4.0 discusses the proposed hardware configuration for the REMIDS II system and

lists the unresolved issues.

Throughout this report the following terms are used. Architecture refers to the organi-
zational structure of a processor. Processor refers to an implementation of an architecture.
More than one implementation of an architecture may exist. System refers to an assembly
of processors that form a whole—in this case, the REMIDS system. Operation refers to the
actions performed when an instruction is executed. Examples are the addition and multipli-
cation operations of scalar arithmetic; the convolution, thresholding and feature extraction
operations of image analysis; and the dilation and erosion operations of morphological image
processing. Algorithm refers to a set of operations and rules for getting a specific output from
a specific input. Process refers to an aigorivhm that changes the general form of data in a de-

finable way. Consequently, data compression, clustering, and lincarity and density screening
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are processes and algorithms since they have image, vector, scalar, and morphological data
types. Architecture overhead refers to the processing power required for operations that do
not contribute to the processing of algorithm data, such as [/O management, processor syn-
chronization, etc. Architecture overhead also includes processing power that is wasted when
part of the hardware is unused because the hardware is not perfectly fitted to the algorithm.
For instance, during synchronization of multiple parallel processors, some processors will
idle—contributing nothing to performance—whiie waiting for other processors to complete
their operations. Architecture head room refers to the available safety margin of processing
power. Although some processing power may be unused, it is not included as part of the
architecture head room if it is not able to be used (for example, idle time during processor

synchronization).

The following sections provide background material on the sensor and the algorithms
for mine detection, describe the methodology used to evaluate the data compression and

classification processors, and summarize the results of the study.

1.1 Background

The remote minefield detection system (REMIDS) developed by the Waterways Experimen-
tation Station (WES) uses a sensor, which includes active and passive modalities. to form
images for remote sensing of anti-personnel and anti-armor mines. The sensor includes a
thermal infrared (IR) detector and two (parallel and cross) polarization sensitive near in-
frared (NIR) detectors with an active polarized IR laser illuminator. The sensor is intended
to be mounted in an autonomous or remotely piloted air vehicle that will traverse navigable

land areas to locate and identify the boundaries of minefields.

The algorithms use an adaptive muiti-sensor fusion approach to finding the minefields
(see Figure 1, Minefield Detection Algorithm). The polarization information is formed into
two images: the difference between the parallel and cross polarization returns, and the total
of the these two returns. These, plus the thermal image, make up the three image inputs to

the minefield detection algorithm.
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The algorithms can be divided into two major sections. The top half of Figure 1 (the part
above the classification block) shows an adaptive data compression algorithm that, with slight
variations, is executed on each of the three image types: polarized NIR detectors’ difference,
polarized NIR detectors’ total, and IR thermal detector. This algorithm determines those
pixels that are likely to be part of a mine. Pixels are chosen based on an analysis of edges in
the region of the pixel. The lower half of Figure 1 depicts an adaptive classification algorithm
that categorizes the pixels screened in the data compression algorithm into individual clusters
and then regroups them into objects. These objects can then be analyzed for shape, size, and
spatial distributions to determine if they are part of a minefield. The classification algorithm

is explained in detail in Section 3.1.

1.2 Evaluation Methodology

Alternative synthesis and evaluation has been constrained, primarily, by time and funding. In
order to provide the most thorough analysis practical in the time available, several individuals
were assigned to evaluate different architectures for the data compression and classification
processors. To provide consistent evaluation of the architectures and to limit the impact of
biases, a consistent procedure of evaluation is used. The procedure of choosing processors
has two major steps. These steps are applied to evaluate the data compression processors

in Sections 2.3 and 2.4, and the classification processors in Sections 3.3 and 3.4.

In the first step, a set of decision criteria and priorities are established. The decision
criteria are divided into a mandatory and a desirable set. The mandatory criteria are essential
for success of the real-time project. The desirable criteria are assigned a weight, on a scale
of one to ten, that reflects their importance for successtul completion of the program. The
most important desirable criteria receive a weight of ten. Other desirable cniteria are given

weights in proportion to the most important desirable criteria.

The second step is to assign a score to each processor for each desirable criteria, on a
scale of one to ten, that reflects how well each processor satisfies each of the desirable criteria;

each processor is also studied to determine if each mandatory criteria has been satisfied. If




a particular architecture does not satisfy a mandatory criteria, then it is eliminated from
further consideration. The processor that best satisfies the desirable criteria receives a score
of 10. Other processors are given scores proportional to a score of 10. Whenever possible,
the scores are based on quantitative information. Each processor then receives a composite
score—computed by summing the products of the criteria weights and the processor scores

for each criteria—that is used to justify the choice of processor for the REMIDS system.

1.3 Summary of Results

Three alternatives were evaluated for real-time execution of the Data Compression algo-
rithms, the AISI AISI5000, the ITI Series 150 board set, and the Datacube Max-Video board
set. It was concluded that the Datacube board set provides the best balance of cost, per-
formance, and support for this algorithm. The alternatives either had significant risk of not
being able to execute the algorithms in real time or required development of special inter-
faces to handle the line lengths from the REMIDS II sensor and the required high resolution
display. The Datacube board set provides the required interfaces, modules to execute each

of the sections of the algorithm in real time, and reasonable software and field support.

Five alternatives were considered for real-time execution of the Classification Processor
algorithms. These were the AMT DAP500, the N-Cube N-Cube7, the Parsytec Transputer
boards, the AISI AISI5000, and multiple 68020 boards from Force. It was concluded that the
Parsytec Transputer boards provide the best balance of cost, performance, and support for
these algorithms. It is anticipated that 13 Transputers will provide the required processing
power. The system is expandable with boards that contain two transputers each. The
support software is well established and the cost is well below any of the alternatives.

Section 2.0 e :plains in greater detail why the Datacube board set was chosen for integrat-
in-g and executing the Data Compression algorithm. Section 3.0 explains why the Parsytec

Transputer board set was chosen for integrating and executing the Classification algorithm.




2.0 DATA COMPRESSION PROCESSOR

The data compression algorithms require extensive processing for each pixel acquired by the
sensor. Two approaches exist for implemenfing the algorithms in real time. Since the algo-
rithms were initially implemented for non-real-time execution, we assumed a frame-by-frame
approach. An alternative, which must be considered, is to implement the algorithms in a
line-by-line approach. The principal difference between these approaches is in the adaptive
thresholding aspects of the algorithm. The line-by-line approach provides a smoother tran-
sition when the characteristics of the data change, but it will also require more computation.
For this evaluation, it is assumed that the existing frame-by-frame approach will be fol-
lowed. However, one of the desirable decision criteria is the availability of enough flexibility

and computational power to implement a line-by-line approach.

An overview of the data compression algorithm and hardware performance analyses can
be found in Sections 2.1 and 2.2. The acceptance criteria and evaluation results correspond-
ing to the two steps of the evaluation process, explained in Section 1.2, are contained ‘n

Sections 2.3 and 2.4.

2.1 Data Compression Algorithm Analysis

Execution of the data compression algorithms can be performed by the generic processor
depicted in Figure 2, Generic Data Compression Processor. Three image channels—sum,
difference, and thermal—are shown passing through the processor in parallel. The hardware
resources may be shared across multiple channels and operate upon each channel sequentially.
The classes of operations required by the data compression algorithms can be categorized as
follows:

Input Data Formatting

Image Buffering

Histogramming and Image Statistic Computation
Convolution

Thresholding

Feature Extraction

Image Display
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These operations form a required minimum set of functions that any potential data com-

pression processor must support.

2.2 Data Compression Hardware Performance Analysis

There are two general classes of processing architectures that can provide enough compu-
tational power to execute the data compression algorithms in real time: massively parallel
and pipelined. These two parallel processing architectures were considered in developing an

implementation of the data compression algorithms.

In the fine-grained, massively parallel architecture, many simple processing elements
(PEs) execute a common program in unison. Each PE has local storage, as well as access to
the storage of PEs in a local neighborhood. Each PE executes the algorithm on a pixel or

group of pixels. This architecture is discussed in Section 2.2.1.

The PE of the pipelined architecture transfers data in a raster-scan format through a
series of processing stages. Each stage executes one or several instructions from the algorithm
on the data that it receives. The current stage then sends the results to the next stage for
execution of the next set of instructions while it processes the next set of input pixels. The
pipeline of stages acts as a production line. Each stage executes a portion of the algorithm

and passes the results to the next PE. This architecture is discussed in Section 2.2.2.

2.2.1 Massively Parallel, Mesh Connected Architectures

The first architecture that was considered is the massively parallel architecture. The Applied
Intelligent Systems AISI5000 parallel processor is the implementation studied. It is a single
instruction multiple data (SIMD) architecture consisting of an Nx1 dimensional array of
computational elements; the array size can range from 128x1 to 1024x1. The AISI5000
array is as wide as the image because there is one PE allocated for each column in the image.
Enough memory is coupled directly to each PE to hold the entire column of the image data,

as well as to provide a large amount of storage space for intermediate results. A single image




-

operation will load instructions into the PEs, read rows of data from the associated memory
to the PEs, perform the transformation, and then write the resulting transformed rows back

into memory. Rows are read and writtea sequentially until the entire image is processed.

The AISI5000 system consists of three major components:

e A general purpose 68000 host processor and peripherals,
e Special purpose high speed input/output hardware for the parallel processor, and
e An SIMD array parallel processor and controller.

Figure 3, AISI5000 System, shows the relationship between the host, input/output (I/0),
and parallel processor components. The 68000 host includes memory and peripherals; it has
a conventional design and programming methodology. The I/O sections transfer data in and
out of the memory associated with the PEs and contain corner-turning logic. The corner-
turning logic serially buffers the data of a complete image line, then passes the entire row
into the processing array memories in parallel. The data destined for the parallel memory
within the PEs can come from a number of sources, including cameras and standard 63000
addressable random access memory (RAM). The data coming from parallel memory can go
to a number of destinations, including video monitors and the 68000 RAM. The parall.el
processing portion of the AISI5000 consists of the PEs, their associated memory, and the

controller that directs their function.

The linear array can contain up to 1024 programmable, bit-serial PEs; each is tightly
coupled to its own local single-bit-wide memory and has connections to two neighboring PEs
as shown in Figure 4, Organization of the AISI5000 Processor Elements. Each PE has direct
access to 32kbits of RAM within its own column. The data in all adjacent memory columns
can be accessed by a PE through connections to its two neighboring PEs. The PEs can
perform three distinct types of functions: Boolean, neighborhood, and arithmetic. These
functions are performed on single bits read from the memory; the results of the functions are
written back to memory. A three-channel /O system facilitates movement of data in and

“out of the parallel memory. The I/O operates independently of, and asynchronously with,

the PEs.

10
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2.2.2 Pipelined, Recirculating Architectures

The second architecture that was analyzed is the pipelined architecture. With a modu-
lar family of programmable, pipelined processing units, a real-time image processor can be
customized for a specific algorithm. For the pipelined architecture, the Datacube and ITI
processors were considered. They can be customized to a set of algorithms by distribut-
ing the various operations required for image processing and analysis to separate Versabus
Module Europe (VME) boards that have been designed to perform the operations of image
algorithms. Each board supports a powerful, flexible set of operations of a particular class.
Partitioning of operations to distinct hardware boards typically occurs along the following

boundaries:

Image Acquisition/Display

Image Memory

Convolution/Finite Impulse Response (FIR) Filtering
Histogram /Feature Extraction

General Digital Signal Processing (DSP)
Neighborhood Processing

These modules may bé arranged to support a number of paralle] architectures, from multi-
pass recirculating architectures to fully pipelined architectures. The processing units are
designed to allow pixel data to flow synchronously through high-speed pipelines at video
rates—typically 10MHz (10 Million Hertz or 10 Million cycles per second). Multiple ded-
icated image data buses are supported throughout a multi-board configuration. For re-
circulating implementations, the routing of these buses and the interconnection of various
processing modules can be modified on-the-fly through cross-point switching units. A sepa-
rate 68000-based host processor provides overall control and updates control/configuration
registers on the image processing modules. A pipelined configuration is shown in Figure 5,

Typical Programmable Pipeline Module Image Processor Configuration.

2.3 Data Compression Processor Acceptance Criteria

The first step of the evaluation process, explained in Section 1.2, is applied here for the data

compression hardware. Based on the data compression algorithins currently implemented

13
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and considering real-time execution constraints, the following mandatory and desirable hard-
ware selection criteria were established:
MANDATORY

700 pixels per scan line

High-resolution (7004 element) dlsplay support
Algorithm functionality

Established product

Processing power above established minimum

Size, weight, and power below established maximums

DESIRED

Algorithm overhead (9)

Expandability /Configurability (7)
Architecture overhead (7)

Significant number of units in field (5)
Quality of field support (4)

Slow scan digital input support (3)
Display function support (3)
Minimum cost (2)

Minimal size, weight, and power (2)

The mandatory items are essential to the complesion of the real-time REMIDS project. The
desirable items are given weights from one to ten—shown here in parentheses—that reflect
the ease or difficulty of integrating the individual hardware and algorithms into a real-time

system within the current development constraints.

The available algorithm overhead is the most important of the desirable criteria. This
criteria refers to the ability of the family of processor modules to accommodate the various
algorithm operations called for in the data compression algorithms. The sponsor prefers
these operations to be implemented as directly as possible with a minimum of software
development—reconstruction of operations through sets of primitive commands—and with

as few recirculations of the images as possible.

Expandability and architecture overhead are also desirable criteria. Easy expandability
may be critical if the data compression algorithms require more processing power than we

have estimated. Small increments are more desirable for economic reasons, but reducing the

15




additional programming effort—required when expanding the processor size— should have

a higher priority. Architecture overhead refers to the processing power required for opera-
tions that do not contribute to the processing of algorithm data, such as [/O management,
processor synchronization, etc. Architecture overhead also includes processing power that
is wasted when part of the hardware is unused because the hardware is not perfectly fitted
to the algorithm. For instance, during synchronization of multiple parallel processors, some
processors will idle—contributing nothing to performance—while waiting for other proces-
sors to complete their operations. The programmer may also have difficulty utilizing the

hardware to full capacity if the development system is inadequate.

The sponsor prefers a slow-scan digital interface. The non-standard scanner video data
rate requires that pixels be clocked into the processor at sensor-driven rates. A hardware
module that will accommodate these requirements will eliminate the need for designing and

building custom interface hardware and software.

Image display functions’ are a key component of the data compressibn processor. For in-
stance, overlay features are also highly desirable and will simplify the task of superimposing
flagged pixels (mines) upon the original image. Thus, we prefer the board set to include dig-
ital image display hardware and software support features. In addition, the system requires
support for high-resolution displays because the image line lengths exceed standard video

formats.

The following section applies these criteria to the individual architectures considered.

2.4 Data Compression Processor Analysis Results

Table 1, Data Compression Processor Analysis, summarizes the AISI, Datacube, and ITI
processor qualities based on the criteria described in Section 2.3. Determining whether a
processor possesses adequate processing power is a difficult criteria to evaluate. Besides raw
peak processing rate (for example, the number of 3x3 convolutions per second), overhead

such as host I/0, module reprogramming, bus contentions, etc., must also be considered in
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establishing accurate estimates of net throughput. Optimization techniques that could be
applied in both hardware and software can provide significant performance gains. but they

are difficult to predict.

A throughput analysis for the AISI and the Datacube systems is summarized in Ta-
ble 2, Data Compression Throughput Analysis (Datacube Board Set), and Table 3, Data
Compression Throughput Analysis (AISI5000) .

We divided the existing data compression algorithms into a set of generic operations
(histogram, convolution, threshold, etc.) that could be mapped to the hardware architec-
tures being studied. The processing time for each operation was then estimated based on
manufacturer’s benchmarks for identical or related operations. A preliminary estimate of
processor performance is possible when given the required input frame rate, knowing the
sequence of generic operations that must be performed per frame, and knowing their respec-
tive execution times on a given set of hardware. Adequate time margins must be available

to accommodate the overhead not considered in this simplified analysis.

The following sections discuss the evaluation of the Datacube, AISI5000, and ITI hard-

ware for their ability to perform the data compression algorithms at real-time rates.

2.4.1 Datacube MaxVideo Boards

The second step of the evaluation process, explained in Section 1.2, is applied here to
the Datacube MaxVideo boards. The Datacube Maxvideo board set is particularly well
matched to the operations specified in the current data compression algorithms. Its two-
stage pipelined processor—each stage consisting of multiple processing boards—should pro-
vide more than adequate timing margins for processing and overhead operations. Figure 6,
Two-Stage Pipeline-based Data Compression Processor, depicts a two-stage pipeline pro-
cessor for implementing the data compression algorithms. For those module functions that
do not support processing of variable regions of interest or of line lengths greater than 512

pixels (for example, histogram /feature extraction), two passes over the image frame will be
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Table 2. Data Compression Throughput Analysis (Datacube Board Set)

CONDITIONS :

Single Processor Shared Over Three Channels
700 Pixel by 176 Lines Per Frame
Three Frames Every .5 Second (6 Frames Per Second)
10MHz Pixel Processing Rate
Two-stage Pipeline

One Second Processing Latency
Algorithms Executed “Literally”

Algorithm Operation

Passes Through Frames

Processing Time (mSec)

STAGE 1
Frame Copy 3 37
Histogram/Statistics 3 99
Point Filter/Threshold 2 24.6
(3x3 Convolution)
(Threshold)
Sobel Magnitude 6 74
(3x3 Convolution)
(Mag. Detect)
(Threshold)
234.6
STAGE II
Donut Filter 3 37
(7x7 Convolution)
Histogram/Statistics 3 78
Threshold 11 136
(6 Compares)
(5 Boolean)
Feature Extract 4 50
301

TIMING MARGINS :
Stage I
Stage 11

Note: Processing overhead times
must be factored in and will
decrease resulting timing margins.

500 - 235 = 265 mSec (53%)
500 - 301 = 199 inSec (40%)
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Table 3. Data Compression Throughput Analysis (AI1S15000)

CONDITIONS :

Single Processor Shared Over Three Channels

700 Pixel by 176 Lines Per Frame

Three Frames Every .5 Second (6 Frames Per Second)
Algorithms Executed “Literally”

Algorithm Operation | Processing Time (mSec)
Load Frames 18
Histogram/Statistics 2400
Point Filter/Threshold 11
(3x3 Convolution)
(Threshold)
Sobel Magnitude 33.6
(3x3 Convolution) |
(Mag.Detect)
(Threshold)
Donut Filter 90
(7x7 Convolution)
Threshold 8
(6 Compares)
(5 Boolean)
Feature Extraction 61
2621.6

Note: Processing overhead times
must be factored in and will
decrease resulting timing margins.

TIMING MARGIN :
No Margin
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required. The results are then combined. However, it may prove more efficient to perform the
histogram function using Datacube’s Euclid DSP module, rather than wait for the Feature
Max module to cycle through a full 512x512 frame. Because this board requires a 512x512
image and the REMIDS image is one-third this size, 336 lines of the image will not contain
data. The Feature Max board must process 512 lines per pass; this is a restriction not well

suited to REMIDS images (176 lines per frame).

Considering that the data compression algorithms are essentially fully developed and will
require only minor parameter adjustments in the future, the Datacube implementation will
require the least amount of effort in implementing the algorithms in hardware. Thus, the
Datacube board set provides a very attractive performance/cost quotient. Some degree of
flexibility is available in the sequencing of operations and the interconnecting of processing
elements, particularly if we use the cross-point switch module. However, overhead times
in the algorithm operations and PE synchronization can be expected to rapidly increase as

conditional branching increases.

2.4.2 AISI AISI5000

The second step of the analysis process, explained in Section 1.2, is applied here to the
AISI5000. A single 700 PE AISI processor—one PE per image column—is not suited to
direct implementation of the WES data compression algorithms as currently specified. This
incompatablity results primarily from the very slow rate at which multiple image histograms
can be computed (0.4 seconds per 700x176 frame). The AISI performance on the other
required algorithm operations is more than adequate. The AISI processor works well with
algorithm implementations that employ image morphology rather than histogramming to
perform adaptive background normalization. The data compression algorithm could be re-
worked to take advantage of the operations suited to the AISIS000 architecture and remain
functionally equivalent to the existing algorithm. If the data compression algorithms were
reworked, the AISI5000 could meet the performance requirements for a real-time data com-

pression architecture.
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If evaluating different data compression algorithms—optimized for extended capabil-
ity, robustness, etc.—was desirable, the relatively constrained architecture using dedicated
processing boards becomes much less desirable and the flexibility of the AISI linear array
architecture would be more attractive. Given the resources to remap existing algorithms to
the AISI system (employing some fundamentally different thinking but achieving the same
results), one can achieve a hardware architecture with much more flexibility in terms of pixel
precision, conditional execution, and frame sizes. This flexibility is particularly evident with
programmable algorithm operators, such as nonlinear filtering, shape analysis, etc. However,
the data compression algorithm analysis and selection procedure has already been completed.
The advantages of flexibility are outweighed by the ability of the Datacube board set to map
almost directly to the selected algorithms.

2.4.3 ITI Board Set

Because the ITI board set does not support a high-resolution display format, it has been

eliminated from further consideration.
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3.0 CLASSIFICATION PROCESSOR

An evaluation of the classification processors, considered for implementing the algorithms
shown in the lower half of Figure 1, Minefield Detection System, is discussed here. The classi-
fication processor accepts pixels from the data compression processor and selects those pixels
belonging to minefields. The classification processor performs high-level computations that
are qualitatively different from the image computations performed in the data compression

algorithm shown in the upper half of Figure 1, above the classification block. Consequently,

a more flexible, general purpose architecture is required. The following sections describe the
classification algorithm and processing load, the candidate classification architectures and

processors, and the processor evaluation results.

3.1 Classification Algorithm Analysis

This section describes the Environmental Research Institute of Michigan’s (ERIM) under-
standing of the classification algorithm and determines the processing power required for its
real-time execution. The analysis is based on an examination of the source code supplied to

ERIM by WES.

The classification algorithm consists of a clustering algorithm followed by a linearity
and density screening (LDS) algorithm. Pixels emerging from these algorithms are tagged
with a value corresponding to the likelihood that they belong to a mine in a minefield. The
(z,y) position of the pixel and its tag are used to highlight the potential minefields in one
of the original infrared (IR) images of the terrain. Operator feedback on the accuracy of the

highlighted objects can then be used to refine algorithm parameters during a survey flight.

The first of the two classification algorithms, the clustering algorithm, receives pixels
selected Ly the data compression processor that are likely to belong to mines. The pixels are
three radiance values associated with the same (x,y) position; these pixels are the thermal
IR, and the sum and difference of the two polarized NIR images. The clustering algorithm is

based on the principal that the pixels of mines will produce similar trios of radiance values
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and that clustering of values with similar radiance trios will segregate mine pixels from

background pixels.

To identify clusters, the three radiance values are treated as orthogonal vectors in a three-
dimensional space and thus specify a single point in space (denoted IR3). Clusters are simply
groups of all pixel location trios within a specified distance of one another as determined by
a scaled distance formula. The scaled distance—a variation of the conventional square-root
sum-of-squares distance—is defined in Section 3.1.1. Clusters are represented as the mean
location of all the points in the cluster. The clustering algorithm analysis is described in

detail in Section 3.1.1.

A new input point is compared to all other clusters by calculating the point’s scaled
distance to all existing clusters and sorting these distances to find the closest cluster. If
the scaled distance to the closest cluster is within defined limits, the algorithm merges the
point into the cluster. This causes the cluster position, which is the average of all the points
contained in the cluster, fo shift. Therefore, it must be repeatedly compared to all other
clusters and merged as long as the new position is less than a threshold distance from another
cluster. The merge occurs once for 99% of all clusters containing a single point. If the single
point cluster is not close enough to another cluster, then it remains a cluster with one point
until another cluster is close enough to be merged with it. When the algorithm merges a
pixel with a cluster, or merges two clusters, the new mean center is calculated according
to Equation (2) in Section 3.1.1. In either case, the point’s cluster is passed to the LDS

algorithm.

The second of the two classification algorithms, the LDS algorithm, examines all the
points from each cluster contained in a single frame of imagery to determine the likelihood
that a cluster corresponds to a minefield. The (z,y) coordinates in the original image of
each of the points contained in a cluster are examined and the points are grouped into
individual objects. Objects are groups of pixels that are screened and received from the data
compression algorithm, are parts of an identical cluster, and are sufficiently close together

in the terrain image to be considered the same terrain object. A linear regression, applied
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to the center of mass of these objects, determines if they are sufficiently linearly spaced. In
addition, the objects’ spatial density is obtained by dividing the bounding rectangular area
of the objects in a cluster by the number of objects in a cluster. These two tests provide a
numeric measure of how closely the objects of a given cluster conform to the known pattern

of minefield layout. The LDS algorithm is described in detail in Section 3.1.2.

3.1.1 Clustering Algorithm Analysis

The clustering algorithm is the first of two algorithms that make up the classification al-
gorithm. A detailed description of the clustering algorithm and a determination of the
processing power required is provided here. Several functions included in the source code
supplied to ERIM for evaluation have been dropped from the core algorithm. The core al-
gorithm consists of only the necessary functions of the algorithm. The omitted functions
were found to be either algorithmically unnecessary artifacts of specific implementations or
debugging/prototype features that would not be executed during a real-time demonstration
flight. Figure 7, Core Clustering Algorithm, is an operation flow diagram of the clustering

algorithm. The clustering algorithm transmits output data to the LDS process.

When first initialized, the clustering algorithm will go through a short period of higher
activity during which many clusters are formed and merged. During this active period, the
cluster positions will shift and thus move in IR? as they are merged with each other. This
active period should stabilize with a set of clusters that are representative of the mines and
background in the sensor terrain. Thereafter, pixels would mainly (99%) be added to the
existing clusters. Occasionally, some clusters may be created. We assumed that cluster
creation would stabilize since we expect the terrain to be uniform in vegetation and artifacts

during the minefield search period.

In Figure 7, as each point arrives from the data compression processor, the data is
converted to a cluster representation. Since a pixel can be thought of as a cluster with
o single entry, wc can process points and clusters with the same algorithms. The data

compression processor calculates the new cluster’s scaled distance to all existing clusters
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and finds the smallest distance. The 99% probability is assigned to the threshold test of
the minimum scaled distance because this path through the algorithm corresponds to the
expected behaviour of each newly created cluster. After the cluster has been merged, the
second occurence of this test will fail most of the time. This calculation of cluster distance
must be done to account for any movement of the cluster that occurs when two clusters are
merged. No further merging will occur (99% of the time) and the next pixel in the frame
will be considered. Since each new pixel will be merged once (99% of the time), the scaled

distance equation must be computed twice for each pixel in the frame.

The last two blocks of the real-time clustering algorithm in Figure 7 reduces the mass
(number of points) in the clusters. The clustering algorithm executes for an extended period
of time on a continuous stream of data from the IR sensor. If the external thermal conditions
change and the cluster masses are not periodically reduced, the external changes could have
a serious effect on the reliability of the algorithm. For instance, if the sun goes behind a
cloud, the IR radiance values that formerly indicated a mine could shift to those of a benign

background object. Conversely, background objects could appear to be mines.

The clustering algorithm contains several equations that make up the majority of the
processing load. The evaluation of the scaled distance requires the most computation in
the clustering algorithm since it requires many calculations and must be evaluated at least
twice for each new pixel. Throughout the algorithm analysis, the following assumptions are
made:

o Image data pixels (5;,D;,T;) are 8-bit values.

o A classification frame is 700 x 512 pixels (three sequential IR sensor frames).

¢ A maximum of 5000 points/frame will be received from the data compression
processor.

e A maximum of 50 clusters will be generated.
¢ The minimum object (mine) size is 5 data-compressed pixels.
o Pixel data is transferred in a raster-scan order.

e The frame rate is m = (.66 Hz.

The assumptions above are consistent with the source code supplied to ERIM by WES.
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We have defined several variables in order to describe the clustering algorithm mathe-
matically. S, D, and T represent the sum and difference of the polarized sensor intensities
and the thermal sensor intensity, while n; represents the number of points in the ith cluster.
The analysis of the classification algorithm’s processing load assumes that S;, D;, T;, 38,
> Di, 3T, and n; are maintained for each cluster to minimize calculation of the scaled
distance. S, D;, and T; are the averages and > Si, 3. D;, and Y T; are the sums of all
the pixels in the ith cluster. Equations (1-3) represent a form of the clustering and merging

equations that requires minimal calculation.

The scaled distance is defined as:

i f( 5-% V', ( Bi-Bi \,( G-T \
(—-(n,— +n.')) (__J._'_> + (__J_'_) + (__J____) (1)
cov S+ LS 2.D;+ %D LTi+1LT
where ‘cov’ is a constant. WES defines the scaled distance as the square root of Equation (1).
Because the scaled distance is only used for comparison to other scaled distances or to an
empirical constant, the square root is unneccesary. It also increases computation time.

Optimal software coding of the scaled distance equation will require 9 additions, 3 divisions,

and 6 multiplications.

When two clusters are merged, the new cluster averages (§;—, B’;, 1—17) and cluster sums

(XS5, 2D, 3 T}) are recalculated from the current cluster values according to:

- ¥ . ¥p, .  TT

g (n; +rJli), Dj - (n; +l']li)’ Tj - (n; +;1,') (2)
ZS;':ZSJ'*'ZS!"
2. D5=3.D;+3 Ds (3)
ZT;‘=ZTJ'+ZT,‘.

Optimal coding of these equations will require 4 additions and 3 divisions per merge.

where:
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The data acquisition rate allows 1.5 seconds to process 5000 points and 50 clusters.
Consequently, the computational load can be computed as:
(2(9A + 6M + 3D) + (4A + 3D)

1.5seconds
(3.7A + 2M + 1.5D) MFLOPS = 7.2 MFLOPS.

x 50 x 5000 ~
) (4)

The 7.2 million floating-point operations per second (MFLOPS) rate is used in Section 3.1.3

to determine the total processing load for the classification algorithm.

3.1.2 Linearity and Density Screening (LDS) Algorithm Analysis

The LDS algorithm is the second of two algorithms that make up the classification algorithm.
A detailed description of the LDS algorithm and a determination of the processing power
required is provided here. The LDS algorithm groups pixels of the same cluster into physical
objects based on their spatial (z,y) locations within the original IR images. All the objects
within a cluster are subjected to a linear regression test to determine the linearity of the
objects in ihe original IR images. The spatial densities of the ob jects of each cluster are then
calculated. The linearity and density values together provide a quantitative test of whether

a given cluster of objects is a minefield.

Figure 8, Linearity and Density Screening Algorithm, is an operation flow diagram of
the LDS algorithm. The LDS algorithm accumulates a frame of up to 5000 points that were
selected by the data compression processor. It then uses the points’ cluster identification (a
value that uniquely identifies the cluster that the point is a member of) and (z,y) image
coordinates to group the points into objects with the same cluster identification and similar
location. The objects in each cluster are then analyzed to determine their linearityv with
respect to one another and the density of the cluster. Finally, the LDS algorithm selects
the clusters with acceptable linearity and density values and ranks them according to their

likelihood of being minefields.

The processing load for the LDS algorithm can be determined in a manner similar to that

of the clustering algorithm. Each section in Figure 8 has a separate processing load that must
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be summed to obtain the total LDS processing load. Conditional execution statements (if-
then-else) are assigned a probability of execution for each path. The probability corresponds
to the maximum computational load value (consistent with the other assumed constraints

of the problem) that was itemized in Section 3.1.1.

The first column builds objects from pixels by first collecting pixels in a horizontal
direction that are within a specified distance from each other. If the cluster identification
changed then the current object boundary has been reached and a new object is started.
When this occurs the object is combined in a similar manner in the vertical direction, using

previously formed objects that have the same cluster identification.

Both the z and y components of point locations, which have the same class, are summed
to obtain the z and y arithmetic means of the object. The means will be used as the center
of mass coordinates of the objects when linearity measures are performed. The minimum
and maximum r are maintained for the object and are used to vertically merge the current

object segment to previous segments with the same class.

A total of 5 additions are required to test if a new point is part of the current object.
Five additions are required to add a point to an object and this occurs with a probability of
0.5. To search vertically requires 90 additions; the probability of a merge is 0.5, assuming 20
previous objects are searched and 10 objects are in the same cluster as the current object.
These assumptions follow from the uniform distribution of the mines and the minimum
mine size of five data compressed points. Merging object sections requires 5 additions at a
probability of 0.25 while starting a new object requires no arithmetic operations and has the

same probability. The total number of additions is:
(5A) + .5(5A) + .5(90A + .5(5A)) = 53.75 additions.

This value is a per point average load based on the given data-dependent execution proba-

bilities.
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The second column calculates linear regression summations for all the objects in each
cluster and also finds the minimum and maximum (z,y) extent of the potential minefield
boundary for each class. The variables x. and y. represent the center of mass coordinates
of objects in the image. The regression summations must be computed for xc, yc, Xcye.
x2, y2, and n;, where n; is the number of objects in the ith class. Because the minimum

object size is 5 pixels, a maximum of -5%92

= 1000 objects could be in a frame. With optimal
coding, 20 additions, 13 multiplications, and 2 divisions are required per object in the frame

to calculate these summations.

The third column calculates the linear regression coefficients for the ith cluster:

by = Exc)'c - Xc ZYC
X2~ Xc D Xe

and by =¥, - bi%e,

where:

L% and V. =

n; By

X =
The length of the minefield along its long axis—a complex conditional equation that depends
on the orientation of the minefield in the image—is also calculated. Assuming a random
orientation of the minefield implies a 0.5 probability for all the conditional pathways in
calculating the minefield front length. These equations require an average of 13 additions,

7 multiplications, and 4 divisions per cluster.

The total LDS algorithm processing rate is:

5000(53.75A) + 1000(20A + 13M + 2D) + 50(13A + ™™ + 4D)
1.5 (
~ (0.29A + 0.01M + 0.0D) MFLOPS =~ 0.3 MFLOPS

for continuous real-time performance. This is a fairly trivial rate compared to the clustering

(@]

algorithm, provided that the classification processor does not impose a severe overhead to

perform the necessary operations.

3.1.3 Classification Processing Load

A realistic determination of the processing load for the entire classification algorithm is

provided here. The value is the sum of the arithmetic loads determined in Sections 3.1.1
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and 3.1.2 plus external communication overheads. The processing load value must include
sufficient head room so that unforeseen complexities in the implementation of the algorithms
will not require the selected classification processor to be replaced by one with more pro-

cessing power.

The clustering and LDS algorithms require a minimum numeric processing load of about
7.5MFLOPS consisting of 4.0M additions, 2.0M multiplications, and 1.5M divisions. The
7.5MFLOPS value must realistically be doubled to allow for non-optimal coding and unfore-
seen problems in implementing the algorithms for real-time performance. Doubling the re-
quired load is a rough rule of thumb in accordance with good engineering practice. Therefore,
the required numeric processing rate for the clustering and LDS algorithms, not considering

other overhead sources, increases to 15MFLOPS.

Additional processor time will be required for the overhead instructions of program flow
control, data loading, etc. Numerous instruction traces for vonNeumann processors put these
types of overhead at less than 20 percent of the total instruction stream for this kind of a
numerically intensive algorithm. In addition, these operations are mainly of simple integer
type and execute much faster than the more complex floating-point arithmetic instructions.
Consequently, an additional load of about 3 million instructions per second (MIPS) should

be added to the total processor load.

Communication with the data compression processor is an additional source of processing
load. The communication involves receiving the selected pixels with their (z,y) coordinates
and transmitting back the locations and rankings of individual mines after classification.
The input pixels and locations will likely consist of one 32-bit word containing the three
IR values (Si, Di, Ti) and another 32-bit word containing the associated (z,y) coordinates
(16 bits each). Therefore, the data transfer rate is 40,000 bytes (5000x8) in 1.5 seconds
or about 26,700 bytes per second. Sending the classification results back for display would
require the transfer of a maximum of 1000 objects, consisting of 5 bytes each (for r. y. and
rank), in 1.5seconds. This is about 3,300 bytes per second. The total is 30,000 bytes per

second. Although the communication rate appears small, specific architectures may have
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large 1/O overheads. If ten instructions are required per byte moved, then an additional

0.3MIPS should be added into the classification algorithm processing load.

In summary, the classification algorithm will require about 15MFLOPS and 3-4 MIPS to
maintain real-time execution plus 0.3MIPS for data compression to classification processor
communication. Any additional overhead that a given processor’s architecture imposes on

the algorithm will be discussed in Sections 3.2.1 through 3.2.5.

3.1.4 Fixed-Point Precision Requirements

An estimate of the precision requirements of classification Equations (1-3) is provided here.
The required precision is used to determine the minimal precision (number of bits) that will
provide accurate classification results. The precision required to evaluate Equations (1-3) is
estimated by considering the range of the quantities they contain and the operations with

which they are used.

The following assumptions are used in the analysis:

e The ‘cov’ is an 8-bit quantity.
e Equation (1) is required to have 8-bit accuracy.
e The maximum number of points in the ith cluster is n; = 255.

Section 3.1.1 states that S;, D;, T;, S Si, 3. Di, Y Ti, and n; are required to compute
the distance and merging equations for each cluster. The number of points (n;) in the ith
cluster requires a minimum of 8 bits (Log2255) of precision. > S;, 3 D;, and }_ T; each
have a range from 0 to 2552 (255 points x 255 intensities) and require 16 bits (Log;65025) of
precision each. S;, D;, and T; have the same range as S;, D;, and T; (0-255) because they
each contain n pixels and are each divided by n. Thus, their precisions will also be § bits.
The precisions of the individual values can be used along with Equations (1-3) to calculate

the maximum precision necessary for the clustering algorithm.

Equation (1) of Section 3.1.1 can be divided into several parts.

1 2
(5(’% + n:‘)) (6)
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requires:
2 [Log2 G(zss + 255))] ~ 18 bits (7)

of precision to the left of the decimal point for the worst-case values (cov = 1, n; = n; = 255)

and:
1
— ~ 14 bi
2 [Logz (255 (1+ 1))] 14 bits (8)
of precision to the right of the decimal point for the worst-case values (cov = 255, n; = n; =

1). The denominators in the three terms of Equation (1):

(c555=) (s5580) (chesm)
YSi+38i) YD;j+3¥ D)’ YTi+¥Ti)
are about 2n times as large as each numerator because the denominator contains twice the
sum of n values that have the same range as those in the numerator. The required precision
is:

Log((2n)?) = 18 bits (10)

to the right of the decimal point when the worst-case (n = 255) is used.

To compute the precision to the left of the decimal point for these terms, we must
first consider the order that the terms are evaluated. Optimal coding for speed requires
the squaring to occur last so that only one squaring operation is performed for each term.
Previous to squaring, the numerator and denominator are evaluated and their quotient is
formed. The numerator will never be larger than the range of —57, E-,-, and T, (255 with a
precision of Logz255 = 8bits) and the denominator never larger than twice the range of
3 Si, Y Di, and 3 T; (2 x 65025 = 130050 with a precision of Log;130050 = 17 bits).
Division of the numerator by the denominator will place the precision to the right of the
decimal point. Consequently, the minimal precision required to the left of the decimal point

is 17 bits.

Equations (1-10) provide enough information for an estimation of the overall fixed-point
precision requirements of the clustering and merging algorithms. Eighteen bits are necessary

to the left of the decimal point to represent the maximum value of Factor (6). Eighteen
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bits are necessary to the right of the decimal point to retain sufficient accuracy when the

fractional Terms (9) are evaluated. The total requirement is 36 bits.

In conclusion, 32-bit floating-point representation will best support the accuracy and
range of values required for the clustering and merging algorithms. The accuracy required
at each step in the evaluation of Equations (1-3) never exceeds the 24-bit precision of the
mantissa of a 32-bit floating-point value. From a resource point of view, the 36 bits could be
used more efficiently—provide a larger range of the same accuracy using the same precision—

if they were used to represent floating-point variables.

The classification algorithm has been defined and its required precision determined; we

can use this information in the classification hardware performance analysis below.

3.2 Classification Hardware Performance Analysis

Five architectures were considered for the implementation of the classification algorithms.
Two fine-grained, single instruction multiple data (SIMD) architectures were evaluated. The
SIMD architectures are made up of many—1024 in both of these processors—simple paral-
lel PEs, configured with linear (AISI5000) and mesh (DAP500) communication paths. The
analysis for the AISI AISI5000 and the AMT DAP500 architectures are contained in Sec-
tion 3.2.5 and Section 3.2.1, respectively. Three different coarse grained multiple instruction
multiple data (MIMD) architectures were evaluated: one using standard complex instruc-
tion set computer (CISC) microprocessors communicating on a parallel bus interconnection
topology (68020 microprocessor), one using custom CISC microprocessors communicating
on a hypercube interconnection topology (N-Cube 7), and one using reduced instruction set
computer (RISC) processors communicating with a flexible mesh interconnection topology
(T800 Transputer). The analyses for the Force 68020, N-Cube N-Cube 7, and Parsytec TS00

Transputer are contained in Section 3.2.4, Section 3.2.3, and Section 3.2.2, respectively.
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3.2.1 AMT DAP500

One of the two implementations of an SIMD, mesh connected architecture—AMT’s (Ac-
tive Memory Technology) DAP500 (Distributed Array Processor)—is discussed here. The
DAPS500 is organized as a 32x32 mesh of single-bit PEs and up to 1Mbit of local memory
per element (see Figure 9, DAP500 System and Figure 10, DAP500 Processor Element Or-
ganization). The system uses a 10MHz clock rate. Most instructions can be executed at this
rate to provide 10!° Boolean operations per second. These features make the DAP 500 well

suited for vector, matrix, and image operations.

The analyses contained in the fixed-point and floating-point sections below use the clas-
sification algorithm MFLOPS rate, which was calculated in Section 3.1, and the fixed-point
and floating-point processing rates of the DAP500, along with some approximations for the
amount of processing power consumed by overhead items, to determine how much head room
the DAP500 provides. If the head room—defined as the amount of extra processing power
available in the basic system—approaches 100%, then the DAP500 passes the mandatory

criteria for processing power.

3.2.1.1 Fixed-Point Performance Analysis

We can use the fixed-point precision requirements to calculate the amount of time the
DAPS500 will require to execute the clustering and LDS algorithms. First the execution
time for processing Equation (1) is calculated using execution times published by AMT for
1024-element vector operations using 32-bit fixed-point representation. The analysis is then
repeated using actual times calculated by AMT for Equation (1), assuming 1024-element
vector operation, using 16-bit fixed-point representation. Results for the total clustering and
LDS algorithm execution time are extrapolated from the execution time of Equation (1) and
normalized for comparison. By comparing these times with the 1.5 second frame time, we

can calculate the head room provided by the DAP 500.
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The DAP500 is capable of executing:

e 1024 3% ¢ fixed-point additions or subtractions in 12ucec or
e 1024 32-bit fixed-point multiplications or divisions in 190usec.

When using additional bits of precision, we assume a linear increase in time for addition
and subtraction operations and a geometric increase of time for multiplication and division
operations. Consequently, we find that the DAP500 is capable of executing:

e 1024 36-bit fixed-point additions or subtractions in 13.5usec or
e 1024 36-bit fixed-point multiplications or divisions in 240.47usec.

The time to calculate the clustering and merging equations of 5000 points for 50 clusters
is then:
13.5usec

50 x 5000 x (22_____ + QIM

1024 1024 )= 1.31 seconds.

The LDS calculations were estimated to require 0.3 MFLOPS; this is 5% of the clustering
and merging processing load. AMT estimates that data I/O consumes about 8% of the
processing power of the DAP500. Therefore, we increase the time by 5% to account for the
LDS calculations:

\1.31 seconds + 0.05 x 1.31 = 1.37seconds

\
and then increase it by 8%\130 account for data 1/0:

1.37 seconds + 0.08 x 1.37 = 1.48 seconds.
The 1.48 seconds is very close to the allotted processing time of 1.5 seconds.

In conclusion, 36-bit fixed-point processing will just barely allow the processing to be

done at real-time rates. The head room is:

(1.50 — 1.48)

o x 100% = 1%

This pecentage of head room does not approach thc 100% head room that was mandated by

good engineering practice.
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Actual processing times for the scaled-distance equation, shown in Equation (1) and
evaluated at AMT, are us2d to provide a more realistic vaiue cf the DAP 500 head rooni.
The following additional assumptions were used:

e 16-bit fixed-point format is appropriate for the problem,

o All 1024 calculations would have the same fixed-point representation and would
require identical normalization, and

e No processors would be idle in any given frame.

The measured running time was 735usec for 1024 evaluations, which is equivalent to:

50 x 5000

094 735useconds = 0.18 seconds

for the 250,000 (50 x 5000) evaluations required in the worst-case scenario.

These calculations were performed using 16-bit precision and must be normalized with
respect to the 36-bit fixed-point processing times computed previously. Linear increases
for addition and subtraction and geometric increases for multiplication and division will
be used again. Section 3.1.1 shows that the distance equation consists of 9 additions and

subtractions and 9 multiplications and divisions. The time to compute 250,000 evaluations

36 (9 36\* /9
T (E(0.18)) + (E) (E(O.IS)) = 0.66 seconds.

The total running time for the clustering algorithm requires a consideration of the fol-

of Equation (1) is:

lowing. Equation (1) must be computed at least twice per frame. The merging equations
must also be computed once per frame for each of the 5000 points, times each of the 50
clusters. Because Equation (1) requires 9 additions, 3 divisions, and 6 multiplications and
Equation (2) requires 4 additions and 3 divisions, the approximation of the running time for

the merging equations is less than 50% of the scaled distance running time: .

443
(m) 066 ~ 0.3 oeconds.

The total running time for the evaluations of the clustering equation is:

0.66 + 0.66 + 0.3 = 1.61 seconds.
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The LDS calculations were estimated to require 0.3 MFLOPS; this is 5% of the clustering
and merging processing load. AMT estimates that data I/O consumes about 8% of the

processing power of the DAP500.
Therefore, the time can be increased by 5% to account for the LDS calculations:
1.61 seconds + 0.05 x 1.61 = 1.69 seconds
and then increased by 8% to account for data I/O:
1.69>seconds; + 0.08 x 1.69 = 1.83 seconds.

This time is a reasonable estimate of the entire processing time per frame including data
I/0. Comparing 1.83 seconds with the 1.5 seconds available for these calculations shows that
there is no head room available for overhead items that haven’t been included in this analysis

or for an increase in the required processing power of the classification algorithm.

There are a few factors that haven’t been included in calculating the 1.83second pro-
cessing time. The classification calculations could be hand coded by an experienced DAP 500
programmer to make use of the full power of the system. The algorithm complexity has
been estimated, so more processing power may be required. There are other overhead items
such as interprocessor communication and synchronization that may also require a signifi-
cant percentage of the total processing power available. The maximum number of clusters
is not related to the processor mesh size (32x32) and may require that a percentage of the

processors are unused for a portion of each iteration.

3.2.1.2 Floating-Point Performance Analysis

The amount of time that the DAP 500 requires to execute the classification and LDS algorithm
equations, when a floating-point representation for variables is used, is estimated here. This
time is compared to the 1.5 second frame time limit for real-time processing to determine if

the required head room is available.
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The DAP500 is capable of executing:

o 1024 32-bit floating-point additions or subtractions in 105usec; thisis 9.75 MFLOPS.
e 1024 32-bit floating-point multiplications in 156usec; this is 6.56 MFLOPS.
o 1024 32-bit floating-point divisions in 212usec; this is 4.83MFLOPS.

If the algorithm exclusively contained multiplications or divisions, the DAP500 would
not be able to provide 7.5MFLOPS for the real-time classification algorithm. Therefore, a

closer examination of the algorithm is necessary.

Referring to Equations (1-3), we see that there are 9+9+4 = 22 additions, 3+3+3 =9
divisions, and 6 4+ 6 + 0 = 12 multiplications required to calculate the clustering and merging
equations for a single point on one cluster. The time to calculate the clustering and merging

equations of 5000 points for 50 clusters is:

105usec 156 usec 212usec
toze T 71022 T2 102

50 x 5000 x (22 >= 1.53 seconds.

The LDS calculations will also require a relatively small amount of time . 1ce they were
estimated to require 0.3MFLOPS; this is 5% of the clustering and merging processing load.
Also, AMT estimates that data I/O consumes about 8% of the processing power of the
DAP500.

Therefore, the time can be increased by 5% to account for the LDS calculations:
1.53 seconds + 0.05 x 1.53 = 1.61 seconds
and then increased by 8% to account for data I/0:
1.61seconds + 0.08 x 1.61 = 1.74 seconds.

This time is a reasonable estimate of the entire processing time per frame including data

1/0.

Comparing this time with the 1.5 seconds available for these calculations shows that there
is no head room available for overhead items that haven’t been included in this analysis or

for an increase in the required processing power of the classification algorithm.
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As in section 3.2.1.1, there are a few factors that haven’t been considered. The classi-
fication calculations could be hand coded by an experienced DAP 500 programmer to make
use of. the full power of the system. The algorithm complexity has been estimated, so more
processing power may be required. There are other overhead items such as interprocessor
communication and synchronization that may also require a significant percentage of the
total processing power available. The maximum number of clusters is not related to the
processor 1esh size (32x32) and may require that a percentage of the processors are unused

for a portion of each iteration.

Based on these head room values and those of the fixed-point performance analysis,

another processor should be considered for implementing the classification algorithm.

3.2.2 Parsytec T800 Transputer

An evaluation of a RISC processor communicating by means of a flexible mesh interconnec-
tion topology is discussed here. A multiple transputer system from Parsytec GmbH can be
configured to perform all the processing functions necessary in the classification processcr.
Figure 11, Transputer-based Classification System, illustrates the syster level interconnec-
tion that would be used to complete the two separate algorithms. The tree structure on the
left implements the clustering algorithm, while the two processors on the right alternately
perform the LDS algorithm on a frame-by-frame basis. When processing at real-time rates,
pixel data enters the clustering tree and classified pixels flow out to the LDS processors. A

full frame of pixels are accumulated alternately by each processor.

Since the clustering algorithm requires a high processing rate to maintain real-time
execution rates, it must be shared by several Transputers. The binary tree structure chosen
facilitates the required search for the smallest scaled distance within the clustering algorithm.
This structure also minimizes the time required to broadcast the value of a merged cluster

or a new pixel entering the algorithm during the algorithm'’s iterative step.
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The LDS algorithm requires a small processor lozd that could be provided by a single
transputer. T'wo transputers are used because LDS processing changes character from pixel-
by-pixel to frame-by-frame. A smooth transition from one typ.e of processing to the other is
provided by having one transputer process a frame of pixel data while the other completes
the calculations “hat require a complete frame—up to 5000 pixels—of data to accumulate
before processing can proceed. The results are then passed along to the data compression

processor for display.

Central control of the multi-processor is executed by the first processor in the clustering
tree. The processor communicates with the data compression processor over the industry
standard VME bus. The primary messages passed are the initially selected pixels output by
the data compression processor and the final mine locations passed back from the classifica-

tion processor.

3.2.2.1 T800 Processor Capabilities

The transputer nodes shown in Figure 11 consist of 1 MByte of local memory, a T800 trans-
puter that includes four standard transputer links for communication, 4kBytes (4 x 2!° Bytes)
of fast RAM, and an Institute of Electrical and Electronics Engineers (IEEE) floating-point
processor. Figure 12, T800 Transputer Chip Organization, illustrates the internal architec-
ture of the T800 processor module and the internal resource interconnections. The integer
and floating-point units can maintain a throughput of 7MIPS and 2MFLOPS—using 32-bit
representation—respectively, when data resides in the on-chip memory. In addition, the
T800 control logic allows floating-point, integer, and communications operations to be over-
lapped; the T800 is limited by access to the internal memory and interdependencies between

instruction operands.

The transputer links are a primary attraction of these processors as they provide a low
overhead communication channel between programs running on two different processors.
The transputer system program is initially loaded over the links on power-up from a non-

volatile memory on the VME bus. During real-time execution, all data 1/O occurs over the
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links. The eight byte messages required for the classification algorithm can be transmitted

at 10 usec per message.

3.2.2.2 T800 Classification Performance

The T800 processor discussion shows that a network of transputers have sufficient power
to execute the classification algorithms. Whether the algorithm should be implemented in
floating-point or fixed-point is a significant question. A floating-point algorithm is much
simpler to code and debug because fixed-point range overflows cannot occur. However,
floating-point operations are generally more complex and on some machines much slower

than their fixed-point counterparts.

For single precision IEEE floating-point, the T800 can execute single additions, multipli-

cations, and divisions in 0.35 usec, 0.55 usec, and 0.85 usec, respectively.

Based on the ratios of operations contained in the clustering and merging Equations (4-

5), an aggregate rate of:

8(0.35) + 4(0.55) + 3(0.85)
15

= 0.503 usec or = 2.0 MFLOPS

is required, assuming 32-bit representation.

Using 32-bit fixed-point, the transputer can perform single additions, multiplications,
and divisions in 0.05usec, 1.95usec, and 2.0usec respectively. These times correspond to
a throughput rate of 1.06 MIPS for the given instruction mix or about half as fast as the
floating-point version. The floating-point unit is faster than the integer unit on the T800

because it was designed several years after the integer unit and uses newer technology.

In addition to the arithmetic operations, several communication operations occur during
the calculations for each input point of the clustering algorithm. Input pixels are broadcast
to all the processors for calculation of the scaled distance. Then each processor finds the
minimum distance and sends it toward the root of the tree where the root node checks the

distance against a threshold. Lither a merge command is sent back or the pixel remains
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a discrete cluster. In all, a worst-case value of about 100 bytes must be shipped around
the multiple processors at 1.25usec per byte, or 125usec per input pixel. Much of the data
transfer time is overlapped with the arithmetic processing, but a 20% reserve capacity in
the clustering algorithm will be required to ensure that real-time processing rates can be

maintained when communication overhead is included.

The preceding throughput calculations show that nine T800s are required for the clus-
tering algorithm (9 x 2.0 MFLOPS > 1.2(14.4) MFLOPS) and the required 20% reserve for
internal communication. As already stated, two additional T800s would be used for the LDS.
The Parsytec transputers are most economically purchased in multiples of two, so a total of
twelve T800s would be used, with ten assigned to the clustering algorithm. In addition, cen-
tral control would be accomplished by interfacing the twelfth T800 transputer with the VME
bus. The system described would have more than the desired 100% performance margin and

would be economically priced due to the inherent simplicity of transputer-based computers.

3.2.3 N-Cube N-Cube7

An evaluation of a group of CISC microprocessors communicating on a hypercube inter-
connection topology is discussed here. The N-Cube7, from N-Cube Systems, is a MIMD
processor organized as a hypercube connection of several 0.5MFLOPS CISC node proces-
sors, each with 128kBytes of local memory (see Figure 13, Complete N-Cubel0 System, and
Figure 14, N-Cube Processor Chip Organization). Each node has direct connections to N
nodes where N represents the dimension of the N-Cube and can communicate to every node
in the hypercube by using neighboring nodes as switching networks. Any two nodes can
communicate using less than /N nodes for communications routing, not counting the source

and destination nodes, in an N-dimensional hypercube.

A five-dimensional, 16-node hypercube can perform the major classification calculations.
The node processors have 0.5 MFLOPS capablility, and the clustering algorithm is estimated
to require 7.16 MFLOPS.
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Adding the 5% estimated for the LDS means that:

(7.16 + .05(7.16)) _ st

0.5

nodes processors are required.

This calculation assumes that data is always available for the processor nodes and that
communication and I/O overhead is zero. The minimal system 64-node N-Cube7 has enough
processing power to handle the distance and merging calculations as well as handle I/0
overhead calculations and provide head room for expansion. The 64-node connection also
allows the clustering algorithm to be conveniently mapped to the hardware without exceeding

the 50 cluster maximum.

3.2.4 Force 68020 CPU Board Set

An evuluation of a group of standard CISC microprocessors communicating on a parallel bus
interconnection topology is pr:dvlided here. In this study, the Force central processing unit
(CPU) boards were considered since they are high performance processors and Force is a
reliable board supplier. In addition, the Force boards contain specific dedicated hardware
that speeds message passing in a multi-processor system. The system would be structured
as shown in Figure 15, 68020-based Classification System. The multiple processors commu-

nicate over a VME bus with each other and the data compression processor.

The multi-processor structuring of the classification algorithm would be similar to that
for the transputers (see Section 3.2.2, Parsytec T800 Transputer), but with the tree structure
implemented logically via message passing over the VME bus rather than by hardwired links.
Each processor could load a program from a central memory or an on-board programmable

read only memory (ROM).

3.2.4.1 Force Board Capabilities

Each processor would have a Motorola 68020/68882 processor with 256kBytes of local mem-

ory running at 20MHz and zero wait-states to provide a processing rate of 2MIPS and
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0.2MFLOPS per processor. Floating-point and integer operations may be overlapped sub-
ject to instruction dependencies. Dedicated message passing hardware allows a message,
whose maximum length is eight bytes, to be broadcast to multiple processors with minimal
latency. Additional resources on the board may be used for debugging (serial ports) or by

real-time control software (timers).

The message passing hardware can broadcast a message to a maximum of 21 different
CPU boards in parallel. A hardware first-in first-out memory (FIFO) allows a maximum of
eight bytes to be sent in less than 20usec.

3.2.4.2 Force Board Classification Performance

Muitiple 68020/68882 CPUs will be required to perform the classification algorithm. The
number of CPiJs that would be required for a floating-point and fixed-point implementation
of the classification algorithm is determined here. Given the much slower apparent floating-
point performance of the CPUs (about 10 to 1), serious consideration must be given to a

fixed-point implementation.

For single precision floating-point, the CPU can perform single additions, multiplications,
and divisions in 3.5 usec, 4.5 usec, and 6.25 usec, respectively. For the combination of multi-
plication, division, addition, and subtraction operations in the classification algorithm, the
throughput is 0.23MFLOPS. Alternatively, the CPU has 32-bit fixed-point operation times
of 0.1 usec, 2.2 usec, and 3.9 usec for single additions, multiplications, and divisions. These
times correspond to a throughput rate of 0.7MIPS for fixed-point arithmetic operations. This
rate should be reduced by 30% or more to account for the additional range checking that
must be performed in a fixed-point implementation. Therefore, for the mix of operations
expected from the classification algorithm, the integer implementation would be about twice

as fast as the floating-point implementation.

Communication among processors is flexible because the Force CPUs allow data to be

broadcast to many processors in one communication cycle. Only 75 bytes need to be trans-

56




mitted in the 68020 implementation. However, the message-passing mechanism of the Force
boards prevents much of the communication from being overlapped with the arithmetic com-
putation. All of these items add up to a 50% overhead to preserve real-time throughput rates

with the Force board set.

Comparing these performance figures to the clustering algorithm processing requirement
of 1.5(14.4)MFLOPS shows that 94 CPUs would be required for a floating-point implemen-
tation of the clustering algorithm alone. In other words, the CPU is not powerful enough to
perform real-time calculations for even one cluster. An integer implementation would require
about 43 CPUs for real-time execution rates. In addition, three extra CPUs would be used

for the LDS and central control of the algorithm.

3.2.5 AISI AISI5000

An evaluation of a massively parallel group of fine-grained SIMD single-bit processors com-
municating by means of linear communication paths is provided here. The AISI is a SIMD
machine organized as a linear array of up to 1024 single-bit processors and 32kbits of lo-
cal memory (see Figure 3, AISI5000 System, and Figure 4, Organization of the AISI5000
Processor Elements). The AISI5000 was designed with a very large scale integration (VLSI)
gate array—about 2000 gates. All of the AISIS000 processors operate in lockstep at a 7TMHz
clock rate. The organization of the AISI5000 processor allows it to be used not only for the
image operations it was primarily designed for, but also for general purpose processing of
vectors, matrices, and non-standard problems such as neural nets. Additional details of the
AISI5000 processor can be found in Sections 2.2.1 and 2.4.2.
The AISI5000 is capable of:

e 1024 32-bit integer additions in 3.85usec,
e 1024 32-bit integer multiplications in 318.75usec, and
e 1024 32-bit integer divisions in 318.75usec.

According to AISI, these times could be accurately extrapolated from the 8-bit addition

and multiplication times by assuming a linear increase from 8 to 32 bits for addition and a
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geometric increase for multiplication. The time for division is assumed to be the same as for
multiplication. This rough approximation becomes more accurate when more calculations
are performed, as for vector operations, because the additional time for division is hidden in

the time for overhead calculations.

Using the same line of reasoning as in Section 3.2.1, the time to calculate the clustering

and merging equations with the AISI5000 for 5000 points and 50 clusters is:

15.41 usec 319usec 319usec
024 T 1022 T ¥ 024

50 x 5000 x (22 )= 1.72 seconds,

if 36-bit precision is used. The LDS calculations will also require a relatively small amount
of time since they were estimated to require 0.3MFLOPS; this is 5% of the clustering and
merging processing load. Also, AISI estimates that data I/O consumes about 5% of the
processing power of the AISI5000. Therefore, we could increase the time by 5% to allow for
the LDS calculations:

1.72seconds + 0.05 x 1.72 = 1.81 seconds
and then increase it by 5% to account for data I/0:
1.81 seconds + 0.05 x 1.81 = 1.90 seconds.
This is a reasonable estimate of the entire processing time per frame including data 1/0.

The AISI5000 cannot perform the classification operations at the required real-time rate

and should not be considered for real-time execution of the REMIDS classification algorithms.

3.3 Classification Processor Acceptance Criteria

The first step of the evaluation process, explained in Section 1.2, is applied here for the clas-
sification hardware. The classification processor architecture recommended by this report
should be the one most likely to produce a real-time demonstration within the limited de-
velopment period available. The architecture may not be the highest performance processor

nor the most suitable architecture since these attributes may make the processor difficult to
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program, purchase or interface. This section will define a set of criteria that allows objective
comparison of different architectures and consistent rating of subjective features such as ease
of programming.

The selected criteria are split into mandatory and desirable groups.

MANDATORY

Bus system compatible with the data compression hardware,
Established product,

Adequate processing power, and

Below size, weight, power and cost thresholds.

DESIRED

Development support for parallelism (10)
Head room (%) of basic system (9)
Architecture I/O overhead (7)
Expandability (7)

Units in field (5)

Field support (4)

Cost (2)

Size, weight, power (2)

In the desirable list, the development support for parallelism is considered to be the
most important and is given a weight of 10. Many processors working together can perform
a task in real-time if enough of them are used; the difficulty arises in programming them to
work efficiently in parallel. Some development environments support parallelism well, while
others simply provide the parallel capablility and leave management to the programmer. The
programmer may also have difficulty utilizing the hardware to full capacity if the development

system is inadequate.

Head room, defined as the percentage of spare processing power available in a baseline
system, is given the next highest importance. Although additional processing power can be
added in some cases by providing additional processors, this is not intended to be considered

part of the head room value.

Expandability and architecture overhead were next in order of importance. Easy ex-

pandability may be critical if the classification algorithm requires more processing power
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than has been estimated in this report. Small increments are more desirable for economic
reasons, but reducing the additional programming effort, required when expanding the pro-
cessor size, should have a higher priority. Architecture overhead refers to the processing
power required for operations that do not contribute to the processing of algorithm data,
such as [/O management, processor synchronization, etc. Architecture overhead also includes
processing power that is wasted when part of the hardware is unused because the hardware
is not perfectly fitted to the algorithm. For instance, during synchronization of multiple
parallel processors, some processors will idle—contributirg nothing to performance—while

waiting for other processors to complete their operations.

Next in importance were the number of units in the field and the available field support.
The number of units in the field is used to estimate the maturity of the product. Normally,
initial products are prone to difficulties that a more mature product would have previously
eliminated. In the event of a problem with purchased hardware, the field support provided
will determine how much time is lost before work can resume. While some companies provide
spare boards for the user to stock on location or provide 24 hour replacement service, others

may require that the failing board be shipped out for repair.

The final items were the size, weight, power consumption and cost. Within the maximum

design constraints, these criteria were used to decide between two closely matched processors.

3.4 Classification Processor Analysis Results

Determining whether a processor possesses adequate processing power is a difficult criteria
to evaluate. Besides raw peak processing rate (for example, the number of floating-point or
fixed-point operations that can be processed per second), overhead such as I/O, processor
synchronization and contention, etc., must also be considered in establishing accurate esti-
mates of net throughput. Optimization techniques that could be applied in both hardware

and software can provide significant performance gains, but they are difficult to predict.
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Each of the potential classification processor architectures are evaluated using the crite-
ria defined in Section 3.3. Table 4, Decision Analysis Worksheet (DAP 500/N-Cube); Table 5,
Decision Analysis Worksheet (Parsytec/Force); and Table 6, Decision Analysis Worksheet
(AISI5000), summarize the results of this evaluation for all of the previously described classi-
fication architectures. The following sections discuss the evaluation of each of the processors

and derive the results presented in Tables 4-6.

3.4.1 AMT DAP500

The second step of the evaluation process, explained in Section 1.2. is applied here to the
DAP500. The DAP500 met all the mandatory criteria. A VME card cage, which is available
for this system, facilitates communication to the data compression processor. Size, weight,
power and cost for the DAPS500 are all acceptable. The product has been established a»

being readily available as well as being favored by the sponsor.

An analysis of the algorithm and its implementation on the DAP500 showed the fol-
lowing. When using fixed-point arithmetic, the DAP 500 just barely performed the required
operations in 1.5seconds. The overhead, when using fixed-point arithmetic, was oniy 1%;
this is drasticaily below the required value of 100% overhead. When using floating-point
arithmetic, the DAP500 took 1.74 seconds to perform the required operations; this is 16%
longer than required and provides -16% head room. Because the 24-bit mantissa is smaller
than a 36-bit fixed-point value, a shorter execution time might be expected. The difference
is due primarily to the resynchronization overhead, incurred once for each floating-point
normalization for any of the 1024 processors. Section 3.1.4 showed that 36-bit fixed-point
calculations or 32-bit floating-point calculations are required for the classification equations.
Because the DAP500 cannot perform either of these calculations at the required rate, the
DAPS500 should be removed from the list of systems being considered for the real-time im-

plementation of the classification algorithms.
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The weighted criteria for the DAP were given the following scores. There are currently
25-30 third generation DAPs in the field. Over the past eight years, 20 first- and second-
generation machines have been delivered. Compared with the other systems, this number of
units in the field is small and therefore a score of 6 is given. Field support is rated at 10 out
of a possible 10 points, because spares could be made available for immediate replacement

for a price that is reasonable when compared to the cost of the total system.

The score for the cost of the system is 4 because more powerful systems can be purchased
for a significantly lower cost. The size, weight and power consumption are relatively small;

therefore, the DAP 500 is given a high score of 8.

A score of 0 is given for the expandability criteria. Currently no modularity is designed
into the DAP 500 processor. More processing power can be provided only by duplicating the
system. AMT has just begun manufacturing a DAP600 series processor with a 64x64 array.
The cost for a complete system is $340,000 - $350,000. Although the cost is twice the cost
of the DAP500, the system has four times the number of processors and an increased 1/0

rate.

A score of 10 is given for the development support for parallelism criteria. A large
library of standard routines is available and has been optimized in assembly code for the
DAP. Fortran Plus allows code to be written that is more readable because the details of
the hardware are transparent to the programmer. Assembly code allows the hardware to be

programmed for optimum use of resources when processing time is critical.

The architecture overhead associated with the DAP500, when compared to the other
systems, is in the middle range. Data I/O overhead is estimated to consume about 8% of
the processing power of the system; the DAP500 received a relatively high score of 7 for this

criteria.

The composite score for the DAP 500 is 243. It is ranked in 3rd place, behind the Parsytec
Transputer and the N-Cube Hypercube systems.
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3.4.2 Parsytec T800 Transputer

The sccond step of the evaluation process, explained in Section 1.2, is applied here to the
Parsytec Transputer. The transputer multi-processor meets all of the required criteria for
performing the real-time REMIDS classification algorithm. A VME interface card allows
communication with the rest of the system. The system size, weight and cost are within
acceptable limits. Of the architectures considered, the transputers have a performance-per-
cost ratio that is one of the best. Parsytec is also a well established company with world

markets and has shipped well over 100 transputer boards to customers.

Given the additional programming effort required and the discussions in Sections 3.1.4
and 3.2.2.2 regarding fixed-point versus floating-point, a floating-point implementation of
the algorithm would be preferrable to a fixed-point implementation. The floating-point im-
plementation requires 11 processors and the fixed-point requires four less, but the additional
programming cost could easily exceed the $13,000 hardware savings.. In addition, the im-
plementation risk expands greatly since the fixed-point implementation would be much less

robust with respect to input data values and would possibly be less precise.

The composite score for the Parsytec Transputer is 430, which ranks this architecture in

1st place.

3.4.3 N-Cube N-Cube?

The second step of the evaluation process, explained in Section 1.2, is applied here to the
N-Cube Hypercube. The N-Cube met all the mandatory criteria. An N-Cube system with
the minimal configuration of 64 nodes has more than enough processing power for the classi-
fication algorithms. The system is easily upgradable to twice the number of nodes and with
the addition of a card cage may be upgraded to 1024 nodes. The data I/O bandwidth to
and from the classification processor can be met with the serial host interface and is capable
of communication with the data compression hardware if an additional board is bought for

the data compression card cage.
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The desirable criteria scores are as follows; The N-Cube processor is well established,
as is the Hypercube concept, and N-Cube currently has 200 units in the field; this score is
10. The field support score is 8. The N-Cube comes with a 1 year warranty. Field support
consists of exchanging a defective board for a replacement within 24 hours. The cost score
of 4 was based on a $157,500 price. The size, weight and power score of 6 was based on a
10 ft3, 2501b, 1150 watt system. The expandability was determined to be good and rated a
score of 9. Development support was rated very good and scored 10. Architecture overhead
was accepted as low and scored an 8. The head room for a minimal configuration 64-node

system is 300% and ranked a score of 10.

The composite score for the N-Cube Hypercube is 411, which ranks this architecture in

2nd place behind the Parsytec Transputer system.

3.4.4 Force 68020 Board Set

The second step of the evaluation process, explained in Section 1.2, is applied here to
the Force 68020 board set. Based on the performance evaluation in Section 3.2.4, the
68020,/68882, using floating-point arithmetic, cannot be seriously considered for a real-time
implementation of the REMIDS classification algorithm. Using fixed-point arithmetic, 46
CPUs could be configured together, but the Force board limit of 21 CPUs in a broadcast
operation would make coordinating the algorithm execution difficult and would increase the
data traffic on the VME bus. In addition, the programming effort to control such a large

multi-processor would be prohibitive.

The composite score for the Force 68020 board set is 248, which ranks the architecture

in 4th place behind the Transputer, Hypercube and DAP systems.

3.4.5 AISI AISI5000

The second step of the evaluation process, explained in Section 1.2, is applied here to the AISI

AISI5000. The AISI5000 met all the mandatory criteria. The VME interface is compatible
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with a large variety of hardware so interfacing to the data compression hardware is not a
problem. AISI is an established company with 40 machines in the field. The size, weight,

power and cost thresholds were all met comfortably.

Because Section 3.2.1.4 showed that 36-bit fixed-point calculations are required for the
classification operations and the AISI5000 is incapable of processing at real-time rates with
this precision, the AISI5000 should be removed from the list of systems being considered for

the real-time implementation of the classification algorithms.

Althcugh the AISI5000 is expandable in increments of 128 PEs, the full 1024 PE system is
used as the baseline. No additional increments are possible with the exception of duplication

and next generation hardware.

The development support for parallelism is poor. Although the system does handle par-
allelism well and has an extensive number of comrnands and library routines for vectors, the
system works primarily on image data. The 8-bit image data commands are not appropriate

for the floating-point computations that must be performed.

The architecture overhead for data I/O is about 5%; this is a middle range score compared

with the other architectures considered.

The composite score for the AISI5000 is 145, which ranks the architecture in 5th place.
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4.0 PROPOSED HARDWARE CONFIGURATION

An overall system configuration for the REMIDS II Airborne processor is depicted in Fig-
ure 16, REMIDS II Airborne Processor. At a high level, the two major processor components,
data compression and classification, are arranged in a configuration with a separate Host CPU
acting as a common system controller for each bus. This allows each processor to operate
independently with its bus and to link with the host when data exchanges are required.
With their heavier processing loads, the data compression and classification processor buses
are never directly coupled, thus substantially avoiding the inevitable contention delays. The
proposed data compression hardware consists of programmable pipeline modules produced
by Datacube. The proposed classification hardware consists of several T800 Transputers

that have been incorporated with additional memory into processing nodes by Parsytec.

4.1 Operational Sequencing

The operational sequencing of the airborne processor is summarized below. The inherent

parallel operations are described in a sequential manner for clarity.

e The host CPU initializes data compression and classification processors and other
components of the system.

e The scanner provides the next line of the 3-channel image data that is formatted
by the scanner interface.

e The data compression processor adds a new scan line to its input frame buffer.
If the full frame is assembled, processing begins for this frame. After frame
processing is complete, candidate target coordinates and pixel values are trans-
ferred to the host CPU where they are placed into shared RAM for access by the
classification processor (see Figure 17, Execution Sequence Through the Data
Compression Processor).

o The classification processor accepts candidate target information from the host
RAM and performs clustering and LDS algorithms. Pixel locations where mines
are detected are compiled and transferred to shared host RAM for access by the
data compression processor.

e Detected mine locations are accepted by the data compression processor. They
are then used to assemble an image that is superimposed upon the original
source image from which the detected mines were derived. The source images
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are buffered within the data compression processor and are aligned with the
detected mine masks based upon the overall processing latency through the image
processing chain.

The scanner image with designated mines is converted to a red, green, blue (RGB)
format and displayed on the high-resolution monitor with suitable along-track
compression. The uncompressed video frame is recorded on the video cassette
recorder (VCR) and accepted by the telemetry unit for transmission to the ground
observation station.

4.2 Open Issues

Further development is required in several areas of the operational system design.

The following issues remain unresolved:

Operator interaction during data collection and airborne processing.

Recovery from data-dependent errors that occur within the classification proces-
sor, such as:

o Too many clusters, and

e Too low a threshold.

Deletion of old data from classification clusters.
Detailed bandwidth analysis.

Telemetry and recorder interface overhead effects.
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